发表于:2013/9/6 10:34:12
#0楼
摘要:介绍风机泵调速节能的原理,分析液力耦合、变频调速与永磁调速3种调速方案的优缺点。并从节能效果、可靠性、适应性、隔振效果、使用寿命等方面做综合对比。由于永磁调速是目前最先进的机械联接调速节能技术,介绍永磁调速的工作原理,并对盘式结构(气隙调整)和筒式结构(啮合面调整)两种永磁调速器]结构的优缺点进行对比,通过对比分析盘式结构(气隙式调节)调速器在整体性能可靠性上优于筒式结构(啮合面式调节)调速器。
关键词:风机;水泵;液力耦合器;变频调速永磁调速;气隙;啮合面
中图分类号:TH432文献标识码:B文章编号:1004—7948(2012105—0028—04 doi:103969/j.issn.1004—7948.2012.05.008
引言
风机、水泵属于通用类机械,在国民经济各部门中应用数量较多,应用范围较广。耗电量巨大¨J。据有关部门的统计,我国电动机总装机容量4.5亿kW,其中风机、水泵电动机装机总容量约1.5亿kW。耗电量约占全国电力消耗总量的30%-40%。由于风机、水泵工作机理的特性,常工作电机运行在恒速状态,工作要求的风、水流量也处于变工况运行,而且许多单位在系统设计时均以最大需求来设计,这样造成容量设计偏大,系统匹配不合理,往往是“大马拉小车州…,致使风机、水泵运行效率只有30%一50%,不仅运行成高,而且浪费了电能。可见,风机和水泵在运行中还存在较大的节能潜力,其潜力挖掘的重点是提高风机和水泵的运行效率。做好风机、水泵的节能工作,对国民经济的发展具有重要意义。
1调速节能原理
传统风机、水泵流量的设计均以最大需求来设计,采用阀门或风门挡板等方式调节流量。但实际使用中流量随各种因素而变化(如季节、温度、工艺、产量等),往往比最大流量小得多。通过调节挡板或阀门的开度来调节流量,实质是通过改变管网阻力大小来改变流量,这样一来存在严重的节流损失,还会使风机水泵的运转点偏离最佳效率点,造成能量浪费。
在机组变负荷运行情况下,采用可调速系统可减小大量的节流损耗,节能潜力巨大。从流体力学 的原理得知,使用感应电机驱动的离心式负载流量Q和电机的转速n是成正比关系的,而扬程日与 转速的二次方成正比,所需的轴功率P与转速的量 立方成正比关系。例如,理想情况下,当需要50% 的额定流量时,通过调节电机的转速至额定转速的,通50%。此时系统的扬程仅为原来的25%,所需仅为原来的12.5%。而在实际应用时.风量由 100%下降到50%时,变速调节与风门挡板调 式相比,风机的效率也可以平均高出30%以上。 从泵的运行曲线分析调速后的节能效果如图成本1所示。
当所需流量从Q1减小到Q2时,若采用调节阀门的办法,管网阻力将会增加,管*性曲线上移,系统的运行工况点从A点变到B运行,所需轴功率P2与面积H2×Q:成iEl北;若采用调速泵转速由n。下降到n:,其管*性并不发生改变但泵的特性曲线将下移,其运行工况点由A点移至C点,此时所需轴功率尸3与面积H8×Q2成正比。从理论上分析,所节约的轴功率Delt(P)(H2一风)×(c—B)的面积成正比。通过行统计,离心式水泵类负载通过凋速可节能20%一50%。因此,从节能的观点来看,变速调节方式为最佳节能方式。
2调速节能方案分析
目前,风机调速主要有变频调速、液力耦合调速永磁调速3种形式。
2.1液力耦合调速
液力耦合器是液力传动元件利用液体的动能来传递功率的一种动力式液压传动设备,结构如图2所示。液力耦合器的泵轮和涡轮组成一个可使液体循环流动的密闭工作腔,泵轮装在输入轴上,涡轮装在输出轴上。当电机运转时,电机带动液力耦合器的壳体和泵轮一同转动,泵轮叶片内的液压油在泵轮的带动下一同旋转,在离心力的作用下,液压油被甩向泵轮叶片外缘处,并在外缘处冲向涡轮叶片,使涡轮在液压冲击力的作用下旋转,冲向涡轮叶片的液压油沿涡轮叶片向内缘流动,返回到泵轮内缘的液压油,又被泵轮再次甩向外缘。液压油就这样从泵轮流向涡轮,又从涡轮返回到泵轮而形成循环的液流。而它的输出转速高低是通过调整在涡轮工作腔中工作油充满度的大小来调整的,工作腔中工作油充满度最小,此时输出轴转速最低;反之,速度最高,这就是调速型液力耦合器调速的基本原理p1。
液力耦合器是能够无级调速。调速范围大,适用于大功率的泵或风机的变速调节,目前单台液力 耦合器的传递的功率已达20MW以上。液力耦合器是一种耗能型的机械凋速装置,在忽略机械损失与和容积损失等损失时,液力耦合器的调速效率等于过实际运转速比,调速越深(转速越低)损耗越大,并且最大转差功率损耗发生在转速比2/3处。因此,液力耦合器凋速效率低。属于低效调速装置。
2.2变频调速
变频调速通过改变电动机供电电源频率的方法而达到调节电动机转速,是一种无附加转差损耗的高效电气调速方式。由于发电厂风机水泵的电动机功率都很大,一般采用3kV、6kV供电,须采用高压变频器进行调速运行。目前,最常见的高压变频类型有p1:单元串联多电平型、三电平型、电流型。国外最具代表性的产品有:SIEM公司的IGBT三电平方式,ROBICON公司的单元串联多电平方式,ROCKWALC(AB)公SCⅪ'T电流型和GTO电流型,ABB公司的IGC三电平方式。
变频调速的特点有:1)调速效率高,当变化后,电动机扔在该频率的同步转速附近运行,基本上保持额定转差率。转差损失不增加,只是在变频装置中产生变流损失以及由于高次谐波的影响而造成的损耗。2)调速范围宽,一般可达10:1或20:1,并且在整个调速范围内均具有较高的调速效率,因此变频调速适用于润速范围宽,且经常处于低速状态下运行的负载。3)调速精度高,调速精度在1%左右,适合于负载变动并且对调速精度有较高要求的场合。但变频器输出的电流或电压波形均为非正旋波形,从而产生高次谐波,对电动机和电网都会产生不良影响;同时,高次谐波会引起电动机转矩产生脉动,也容易破坏电动机的绝缘,使电动机和负载的寿命降低。
2.3永磁调速永磁调速是国际上近几年发展起来的一项新的调速节能技术,具有有效隔离降低振动、安装简单、运行可靠、无谐波污染电网、寿命长、维护费用少、环境要求低、与电压等级无关等特点【8J。1999年美国MagnaDrive实现了对风机水泵旋转行凋速,并将传递的功率大大提高,其紧凑型永磁磁力耦合器最大功率可达5000Hp。在提高了永传动的传动效率的同时,全面地提高了电机系统的可靠性,显著地降低了系统的运行费用,将永磁驱动技术开辟了更为广泛的应用,使人们对节能概念有丁全新的认识。目前,广泛应用于发电、冶金、石化、采矿、造纸、供水、水务、水泥、灌溉等行业的离心式泵和离心式风机的节能调速.。
2.4调速特性对比
关于液力耦合调速、变频调速和永磁调速的详细对比如表1所示。
3永磁调速技术原理
3.1永磁调速原理及分类
永磁调速器主要有铜转子、永磁转子和控制器3部分组成,其中导体转子固定在电动机轴上.永磁转子固定在负载转轴上。导体转子和永磁转子可以自由的独立旋转,当导体转子旋转时,导体转子与永磁转子产生相对运动,交变磁场通过气隙在导体转子上产生涡流,同时涡流产生感应磁场与永磁场相互作用,从而带动永磁转子沿着与铜转子相同的方向旋转,结果是在负载侧输出轴上产生扭矩,从而带动负载做旋转运动。永磁调速器主要通过两种方式实现调速:气隙调整方式,啮合面调整方式。气隙调整方式如图3所示,通过控制器调节永磁体和导体转子之间的气隙实现负载轴上的输出转矩变化,从而实现负载转速变化。啮合面调整方式如图4所示,通过调节器调节导体转子和永磁转子在轴线方向的相对位置,
改变两者间的啮合面积,就可以控制传递扭矩的大小,从而实现负载转速的变化。啮台面积大,通过永磁调速器传递的扭矩就大。负载转速高。啮合面积小,通过永磁调速器传递的扭矩就小,负载转速低。
3.2盘式结构与筒式结构永磁调速产品对比
盘式及筒式的永磁调速器虽然都是永磁调速产品。但这两种产品在结构、原理及产生的效果是完全不同的。
盘式永磁耦合器是采用了目前世界上广泛采用的结构。并在2010年取得了国内盘式结构永磁耦合器的新型实用专利。而国内某些公司的永磁耦合器采用的是筒式结构。(筒式结构的永磁耦合器,是基于美国麦格纳公司起诉国内某公司盘式产品侵权后,将盘式结构的永磁调试器改型为筒式结构产品。)
盘式结构从发明到应用,已经有20年的历史,其运行的安全可靠性,已经得到用户普遍的认同。而筒式结构的永磁耦合器,从理论论证到产品生产至今不到2年时间,其运行安全可靠性还没有得到充分的时间验证。
3.2.1结构及调速原理不同
盘式结构的永磁调速器,调速是采用调整导体盘和永磁体的间隙,而改变永磁涡流的强弱来调整转速的,而筒式永磁调速器是靠移动导磁筒和永磁筒的耦合面,改变永磁涡流的强弱来调整转速的。也就是说盘式结构在调速过程中是改变了导磁体和永磁体的间隙,而筒式结构导磁筒和永磁筒的间隙没有改变,只是改变了导磁筒和永磁筒产生磁涡流的面积(就是减少磁钢参与磁感应的数量)。
盘式结构的永磁调速器,导体盘和永磁体在间隙最小时,导体盘几乎不产生热量。只有在导体盘和永磁体拉开到一定间隙时,导体盘会有热量产生。而导体盘产生的热量不易传递给永磁体。并且导体盘和永磁体拉开的间隙更有利于设备的散热。而筒式结构在调速过程中,导磁筒和永磁筒的间隙没有改变,所以运行时导磁筒产生的热量更容易传递给永磁筒,从而威胁到永磁筒内的磁钢的使用寿命。
综合上述原因,盘式结构比筒式结构的磁力调速器更利于散热。从而提高了设备整体的可靠性。
3.2.2安装精度及允差的要求不同
盘式结构的永磁耦合器的安装允差比较大,轴对中小于5mm,角度0.5度即可。而筒形永磁耦合器的允差较小,对安装精度相对要求很高,轴心允差0.5mm ,角度0度,内外套筒安装必须准直,一旦发生偏差(无论是安装引起的,还是运行磨损造成的),则会发生扫膛现象(与电机的转子、定子发生摩擦故障类似),造成永磁体迅速发热,超过永久磁铁的居里温度点,则导致磁钢失磁,造成设备报废,筒形结构的永磁耦合器,能否保证设计寿命30年。是有疑问的!
此外,国产的盘式永磁耦合器产品的应用,从第一台到现在已经运行5年时间,通过在油轮上适应海水湿气的高腐蚀,以及电厂、水泥厂、钢厂﹑煤矿等恶劣环境下的运行。产品在研发、设计、制造中都积累了较丰富的经验,其各方面产品性能都已得到了很好的验证。
4结论
电力、石油、化工等高耗能行业中风机和水泵是最主要的耗电设备,而在“十二五”期间这些企业面临着严峻的节能减排指标。对风机水泵调速节能具有巨大的经济潜力,符合国家节能降耗的方针。
通过对风机水泵调速节能方案的对比分析,了解各种调速方法的优缺点以及应用场合。永磁调速器作为一种新型、先进、可靠的调速传动装置,无论是从经济效益还是从生产的安全稳定性来看,具有液力耦合调速和变频调速无可比拟的优势。目前的应用价值,永磁调速器有广阔的应用前景和应用价值。必将迎来发展和应用的热潮。
(文章来源:上海亦村仪器仪表有限公司 http://www.shyicun.com)
关键词:风机;水泵;液力耦合器;变频调速永磁调速;气隙;啮合面
中图分类号:TH432文献标识码:B文章编号:1004—7948(2012105—0028—04 doi:103969/j.issn.1004—7948.2012.05.008
引言
风机、水泵属于通用类机械,在国民经济各部门中应用数量较多,应用范围较广。耗电量巨大¨J。据有关部门的统计,我国电动机总装机容量4.5亿kW,其中风机、水泵电动机装机总容量约1.5亿kW。耗电量约占全国电力消耗总量的30%-40%。由于风机、水泵工作机理的特性,常工作电机运行在恒速状态,工作要求的风、水流量也处于变工况运行,而且许多单位在系统设计时均以最大需求来设计,这样造成容量设计偏大,系统匹配不合理,往往是“大马拉小车州…,致使风机、水泵运行效率只有30%一50%,不仅运行成高,而且浪费了电能。可见,风机和水泵在运行中还存在较大的节能潜力,其潜力挖掘的重点是提高风机和水泵的运行效率。做好风机、水泵的节能工作,对国民经济的发展具有重要意义。
1调速节能原理
传统风机、水泵流量的设计均以最大需求来设计,采用阀门或风门挡板等方式调节流量。但实际使用中流量随各种因素而变化(如季节、温度、工艺、产量等),往往比最大流量小得多。通过调节挡板或阀门的开度来调节流量,实质是通过改变管网阻力大小来改变流量,这样一来存在严重的节流损失,还会使风机水泵的运转点偏离最佳效率点,造成能量浪费。
在机组变负荷运行情况下,采用可调速系统可减小大量的节流损耗,节能潜力巨大。从流体力学 的原理得知,使用感应电机驱动的离心式负载流量Q和电机的转速n是成正比关系的,而扬程日与 转速的二次方成正比,所需的轴功率P与转速的量 立方成正比关系。例如,理想情况下,当需要50% 的额定流量时,通过调节电机的转速至额定转速的,通50%。此时系统的扬程仅为原来的25%,所需仅为原来的12.5%。而在实际应用时.风量由 100%下降到50%时,变速调节与风门挡板调 式相比,风机的效率也可以平均高出30%以上。 从泵的运行曲线分析调速后的节能效果如图成本1所示。
当所需流量从Q1减小到Q2时,若采用调节阀门的办法,管网阻力将会增加,管*性曲线上移,系统的运行工况点从A点变到B运行,所需轴功率P2与面积H2×Q:成iEl北;若采用调速泵转速由n。下降到n:,其管*性并不发生改变但泵的特性曲线将下移,其运行工况点由A点移至C点,此时所需轴功率尸3与面积H8×Q2成正比。从理论上分析,所节约的轴功率Delt(P)(H2一风)×(c—B)的面积成正比。通过行统计,离心式水泵类负载通过凋速可节能20%一50%。因此,从节能的观点来看,变速调节方式为最佳节能方式。
2调速节能方案分析
目前,风机调速主要有变频调速、液力耦合调速永磁调速3种形式。
2.1液力耦合调速
液力耦合器是液力传动元件利用液体的动能来传递功率的一种动力式液压传动设备,结构如图2所示。液力耦合器的泵轮和涡轮组成一个可使液体循环流动的密闭工作腔,泵轮装在输入轴上,涡轮装在输出轴上。当电机运转时,电机带动液力耦合器的壳体和泵轮一同转动,泵轮叶片内的液压油在泵轮的带动下一同旋转,在离心力的作用下,液压油被甩向泵轮叶片外缘处,并在外缘处冲向涡轮叶片,使涡轮在液压冲击力的作用下旋转,冲向涡轮叶片的液压油沿涡轮叶片向内缘流动,返回到泵轮内缘的液压油,又被泵轮再次甩向外缘。液压油就这样从泵轮流向涡轮,又从涡轮返回到泵轮而形成循环的液流。而它的输出转速高低是通过调整在涡轮工作腔中工作油充满度的大小来调整的,工作腔中工作油充满度最小,此时输出轴转速最低;反之,速度最高,这就是调速型液力耦合器调速的基本原理p1。
液力耦合器是能够无级调速。调速范围大,适用于大功率的泵或风机的变速调节,目前单台液力 耦合器的传递的功率已达20MW以上。液力耦合器是一种耗能型的机械凋速装置,在忽略机械损失与和容积损失等损失时,液力耦合器的调速效率等于过实际运转速比,调速越深(转速越低)损耗越大,并且最大转差功率损耗发生在转速比2/3处。因此,液力耦合器凋速效率低。属于低效调速装置。
2.2变频调速
变频调速通过改变电动机供电电源频率的方法而达到调节电动机转速,是一种无附加转差损耗的高效电气调速方式。由于发电厂风机水泵的电动机功率都很大,一般采用3kV、6kV供电,须采用高压变频器进行调速运行。目前,最常见的高压变频类型有p1:单元串联多电平型、三电平型、电流型。国外最具代表性的产品有:SIEM公司的IGBT三电平方式,ROBICON公司的单元串联多电平方式,ROCKWALC(AB)公SCⅪ'T电流型和GTO电流型,ABB公司的IGC三电平方式。
变频调速的特点有:1)调速效率高,当变化后,电动机扔在该频率的同步转速附近运行,基本上保持额定转差率。转差损失不增加,只是在变频装置中产生变流损失以及由于高次谐波的影响而造成的损耗。2)调速范围宽,一般可达10:1或20:1,并且在整个调速范围内均具有较高的调速效率,因此变频调速适用于润速范围宽,且经常处于低速状态下运行的负载。3)调速精度高,调速精度在1%左右,适合于负载变动并且对调速精度有较高要求的场合。但变频器输出的电流或电压波形均为非正旋波形,从而产生高次谐波,对电动机和电网都会产生不良影响;同时,高次谐波会引起电动机转矩产生脉动,也容易破坏电动机的绝缘,使电动机和负载的寿命降低。
2.3永磁调速永磁调速是国际上近几年发展起来的一项新的调速节能技术,具有有效隔离降低振动、安装简单、运行可靠、无谐波污染电网、寿命长、维护费用少、环境要求低、与电压等级无关等特点【8J。1999年美国MagnaDrive实现了对风机水泵旋转行凋速,并将传递的功率大大提高,其紧凑型永磁磁力耦合器最大功率可达5000Hp。在提高了永传动的传动效率的同时,全面地提高了电机系统的可靠性,显著地降低了系统的运行费用,将永磁驱动技术开辟了更为广泛的应用,使人们对节能概念有丁全新的认识。目前,广泛应用于发电、冶金、石化、采矿、造纸、供水、水务、水泥、灌溉等行业的离心式泵和离心式风机的节能调速.。
2.4调速特性对比
关于液力耦合调速、变频调速和永磁调速的详细对比如表1所示。
3永磁调速技术原理
3.1永磁调速原理及分类
永磁调速器主要有铜转子、永磁转子和控制器3部分组成,其中导体转子固定在电动机轴上.永磁转子固定在负载转轴上。导体转子和永磁转子可以自由的独立旋转,当导体转子旋转时,导体转子与永磁转子产生相对运动,交变磁场通过气隙在导体转子上产生涡流,同时涡流产生感应磁场与永磁场相互作用,从而带动永磁转子沿着与铜转子相同的方向旋转,结果是在负载侧输出轴上产生扭矩,从而带动负载做旋转运动。永磁调速器主要通过两种方式实现调速:气隙调整方式,啮合面调整方式。气隙调整方式如图3所示,通过控制器调节永磁体和导体转子之间的气隙实现负载轴上的输出转矩变化,从而实现负载转速变化。啮合面调整方式如图4所示,通过调节器调节导体转子和永磁转子在轴线方向的相对位置,
改变两者间的啮合面积,就可以控制传递扭矩的大小,从而实现负载转速的变化。啮台面积大,通过永磁调速器传递的扭矩就大。负载转速高。啮合面积小,通过永磁调速器传递的扭矩就小,负载转速低。
3.2盘式结构与筒式结构永磁调速产品对比
盘式及筒式的永磁调速器虽然都是永磁调速产品。但这两种产品在结构、原理及产生的效果是完全不同的。
盘式永磁耦合器是采用了目前世界上广泛采用的结构。并在2010年取得了国内盘式结构永磁耦合器的新型实用专利。而国内某些公司的永磁耦合器采用的是筒式结构。(筒式结构的永磁耦合器,是基于美国麦格纳公司起诉国内某公司盘式产品侵权后,将盘式结构的永磁调试器改型为筒式结构产品。)
盘式结构从发明到应用,已经有20年的历史,其运行的安全可靠性,已经得到用户普遍的认同。而筒式结构的永磁耦合器,从理论论证到产品生产至今不到2年时间,其运行安全可靠性还没有得到充分的时间验证。
3.2.1结构及调速原理不同
盘式结构的永磁调速器,调速是采用调整导体盘和永磁体的间隙,而改变永磁涡流的强弱来调整转速的,而筒式永磁调速器是靠移动导磁筒和永磁筒的耦合面,改变永磁涡流的强弱来调整转速的。也就是说盘式结构在调速过程中是改变了导磁体和永磁体的间隙,而筒式结构导磁筒和永磁筒的间隙没有改变,只是改变了导磁筒和永磁筒产生磁涡流的面积(就是减少磁钢参与磁感应的数量)。
盘式结构的永磁调速器,导体盘和永磁体在间隙最小时,导体盘几乎不产生热量。只有在导体盘和永磁体拉开到一定间隙时,导体盘会有热量产生。而导体盘产生的热量不易传递给永磁体。并且导体盘和永磁体拉开的间隙更有利于设备的散热。而筒式结构在调速过程中,导磁筒和永磁筒的间隙没有改变,所以运行时导磁筒产生的热量更容易传递给永磁筒,从而威胁到永磁筒内的磁钢的使用寿命。
综合上述原因,盘式结构比筒式结构的磁力调速器更利于散热。从而提高了设备整体的可靠性。
3.2.2安装精度及允差的要求不同
盘式结构的永磁耦合器的安装允差比较大,轴对中小于5mm,角度0.5度即可。而筒形永磁耦合器的允差较小,对安装精度相对要求很高,轴心允差0.5mm ,角度0度,内外套筒安装必须准直,一旦发生偏差(无论是安装引起的,还是运行磨损造成的),则会发生扫膛现象(与电机的转子、定子发生摩擦故障类似),造成永磁体迅速发热,超过永久磁铁的居里温度点,则导致磁钢失磁,造成设备报废,筒形结构的永磁耦合器,能否保证设计寿命30年。是有疑问的!
此外,国产的盘式永磁耦合器产品的应用,从第一台到现在已经运行5年时间,通过在油轮上适应海水湿气的高腐蚀,以及电厂、水泥厂、钢厂﹑煤矿等恶劣环境下的运行。产品在研发、设计、制造中都积累了较丰富的经验,其各方面产品性能都已得到了很好的验证。
4结论
电力、石油、化工等高耗能行业中风机和水泵是最主要的耗电设备,而在“十二五”期间这些企业面临着严峻的节能减排指标。对风机水泵调速节能具有巨大的经济潜力,符合国家节能降耗的方针。
通过对风机水泵调速节能方案的对比分析,了解各种调速方法的优缺点以及应用场合。永磁调速器作为一种新型、先进、可靠的调速传动装置,无论是从经济效益还是从生产的安全稳定性来看,具有液力耦合调速和变频调速无可比拟的优势。目前的应用价值,永磁调速器有广阔的应用前景和应用价值。必将迎来发展和应用的热潮。
(文章来源:上海亦村仪器仪表有限公司 http://www.shyicun.com)
[此贴子已经被作者于2013/9/6 10:50:34编辑过]
“十二五”节能减排产品,倡导绿色环保。