发表于:2012/5/4 11:19:33
#0楼
近10年来,永磁同步动机性能快速提高,与感应电动机和普通同步电动机相比,其控制简单、良好的低速运行性能及较高的性价比等优点使得永磁无刷同步电动机逐渐成为交流伺服系统执行电动机的主流。尤其是在高精度、高性能要求的中小功率伺服领域。而交流异步伺服系统仍主要集中在性能要求不高的、大功率伺服领域。
自20世纪80年代后期以来,随着现代工业的快速发展,对作为工业设备的重要驱动源之一的伺服系统提出了越来越高的要求,研究和发展高性能交流伺服系统成为国内外同仁的共识。有些努力已经取得了很大的成果,“硬形式”上存在包括提高制作电机材料的性能,改进电机结构,提高逆变器和检测元件性能、精度等研究方向和努力。“软形式”上存在从控制策略的角度着手提高伺服系统性能的研究和探索。如采用“卡尔曼滤波法”估计转子转速和位置的“无速度传感器化”;采用高性能的永磁材料和加工技术改进PMSM转子结构和性能,以通过消除/削弱因齿槽转矩所造成的PMSM转矩脉动对系统性能的影响;采用基于现代控制理论为基础的具有将强鲁棒性的滑模控制策略以提高系统对参数摄动的自适应能力;在传统PID控制基础上进入非线性和自适应设计方法以提高系统对非线性负载类的调节和自适应能力;基于智能控制的电机参数和模型识别,以及负载特性识别。
对于发展高性能交流伺服系统来说,由于在一定条件下,作为“硬形式”存在的伺服电机、逆变器以相应反馈检测装置等性能的提高受到许多客观因数的制约;而以“软形式”存在的控制策略具有较大的柔性,近年来随着控制理论新的发展,尤其智能控制的兴起和不断成熟,加之计算机技术、微电子技术的迅猛发展,使得基于智能控制的先进控制策略和基于传统控制理论的传统控制策略的“集成”得以实现,并为其实际应用奠定了物质基础。
伺服电机自身是具有一定的非线性、强耦合性及时变性的“系统”,同时伺服对象也存在较强的不确定性和非线性,加之系统运行时受到不同程度的干扰,因此按常规控制策略很难满足高性能伺服系统的控制要求。为此,如何结合控制理论新的发展,引进一些先进的“复合型控制策略”以改进“控制器”性能是当前发展高性能交流伺服系统的一个主要“突破口”。
21世纪是一个崭新的世纪,也定将是各项科学技术飞速发展的世纪。相信随着材料技术、电力电子技术、控制理论技术、计算机技术、微电子技术的快速发展以及电机制造工艺水平的逐步提高,同时伴随着制造业的不断升级和“柔性制造技术”的快速发展,必将为“柔性加工和制造技术”的核心技术之一的“伺服驱动技术”迎来又一大好的发展时机。http://www.xfoyo.com
自20世纪80年代后期以来,随着现代工业的快速发展,对作为工业设备的重要驱动源之一的伺服系统提出了越来越高的要求,研究和发展高性能交流伺服系统成为国内外同仁的共识。有些努力已经取得了很大的成果,“硬形式”上存在包括提高制作电机材料的性能,改进电机结构,提高逆变器和检测元件性能、精度等研究方向和努力。“软形式”上存在从控制策略的角度着手提高伺服系统性能的研究和探索。如采用“卡尔曼滤波法”估计转子转速和位置的“无速度传感器化”;采用高性能的永磁材料和加工技术改进PMSM转子结构和性能,以通过消除/削弱因齿槽转矩所造成的PMSM转矩脉动对系统性能的影响;采用基于现代控制理论为基础的具有将强鲁棒性的滑模控制策略以提高系统对参数摄动的自适应能力;在传统PID控制基础上进入非线性和自适应设计方法以提高系统对非线性负载类的调节和自适应能力;基于智能控制的电机参数和模型识别,以及负载特性识别。
对于发展高性能交流伺服系统来说,由于在一定条件下,作为“硬形式”存在的伺服电机、逆变器以相应反馈检测装置等性能的提高受到许多客观因数的制约;而以“软形式”存在的控制策略具有较大的柔性,近年来随着控制理论新的发展,尤其智能控制的兴起和不断成熟,加之计算机技术、微电子技术的迅猛发展,使得基于智能控制的先进控制策略和基于传统控制理论的传统控制策略的“集成”得以实现,并为其实际应用奠定了物质基础。
伺服电机自身是具有一定的非线性、强耦合性及时变性的“系统”,同时伺服对象也存在较强的不确定性和非线性,加之系统运行时受到不同程度的干扰,因此按常规控制策略很难满足高性能伺服系统的控制要求。为此,如何结合控制理论新的发展,引进一些先进的“复合型控制策略”以改进“控制器”性能是当前发展高性能交流伺服系统的一个主要“突破口”。
21世纪是一个崭新的世纪,也定将是各项科学技术飞速发展的世纪。相信随着材料技术、电力电子技术、控制理论技术、计算机技术、微电子技术的快速发展以及电机制造工艺水平的逐步提高,同时伴随着制造业的不断升级和“柔性制造技术”的快速发展,必将为“柔性加工和制造技术”的核心技术之一的“伺服驱动技术”迎来又一大好的发展时机。http://www.xfoyo.com