发表于:2013/9/2 17:31:25
#0楼
数据挖掘(DataMining,简称DM)是从大型数据库或数据仓库中发现并提取隐藏在其中的有用信息的一种新技术,CRM是数据库研究中的一个很有应用价值的领域。下面我们将利用数据挖掘技术来对实现客户价值细分。
3.1 数据挖掘平台的体系结构
数据挖掘平台的体系结构数据主要有三个层次,CRM系统即表现层、业务逻辑层和数据层。其中表现层主要包括动态HTML和应用客户;业务逻辑层主要包括DM功能配置、DM控制引擎以及DM建模与重构。CRM软件数据层主要有数据库以及数据仓库。
数据挖掘的目标是从数据库中发现隐含的、有意义的知识,客户关系管理系统人们可通过此来预测未来趋势及行为,做出前摄的、基于知识的决策。它的主要功能有:自动化预测趋势行为的功能、关联分析的功能、聚类的功能、概念描述的功能以及偏差检测的功能等。
3.2 数据挖掘客户细分的实施
3.2.1 基于数据挖掘的客户细分模型
基于数据挖掘的客户细分模型如图2所示,该模型中的客户细分过程主要包括学习、应用和分析三个主要步骤。
3.2.2 基于数据挖掘客户细分流程
在进行客户细分前,首先必须对客户的消费行为和需求进行分析,建立符合特征描述。接下来对客户的战略价值进行分析,对其进行有效的价值定位。然后对客户进一步的了解,完善并实施市场营销策略。具体实施步骤主要包括:选择主题与模型,构建数据仓库、构建标准数据集、算法设计、预处理、客户细分以及结果评估。通过对用户人口信息、用户行为和价值进行基于聚类分析的数据挖掘,得出客户人口信息、用户行为和价值基于聚类分析的数据挖掘,得出客户分群和基本特征,并使用数据进行了验证,确定了客户细分模型的有效性。
3.1 数据挖掘平台的体系结构
数据挖掘平台的体系结构数据主要有三个层次,CRM系统即表现层、业务逻辑层和数据层。其中表现层主要包括动态HTML和应用客户;业务逻辑层主要包括DM功能配置、DM控制引擎以及DM建模与重构。CRM软件数据层主要有数据库以及数据仓库。
数据挖掘的目标是从数据库中发现隐含的、有意义的知识,客户关系管理系统人们可通过此来预测未来趋势及行为,做出前摄的、基于知识的决策。它的主要功能有:自动化预测趋势行为的功能、关联分析的功能、聚类的功能、概念描述的功能以及偏差检测的功能等。
3.2 数据挖掘客户细分的实施
3.2.1 基于数据挖掘的客户细分模型
基于数据挖掘的客户细分模型如图2所示,该模型中的客户细分过程主要包括学习、应用和分析三个主要步骤。
3.2.2 基于数据挖掘客户细分流程
在进行客户细分前,首先必须对客户的消费行为和需求进行分析,建立符合特征描述。接下来对客户的战略价值进行分析,对其进行有效的价值定位。然后对客户进一步的了解,完善并实施市场营销策略。具体实施步骤主要包括:选择主题与模型,构建数据仓库、构建标准数据集、算法设计、预处理、客户细分以及结果评估。通过对用户人口信息、用户行为和价值进行基于聚类分析的数据挖掘,得出客户人口信息、用户行为和价值基于聚类分析的数据挖掘,得出客户分群和基本特征,并使用数据进行了验证,确定了客户细分模型的有效性。