发表于:2013/3/27 16:57:43
#0楼
超级电容器(super capacitor),又叫双电层电容器(Electrical Double-Layer Capacitor)、黄金电容、法拉电容,是介于传统电容器和充电电池之间的一种新型储能元件[2],其容量可达几百至上万法,比功率是电池的10倍以上,储存能力比普通电容器高,具有工作温度范围广、可快速充放电、循环寿命长、无污染、零排放等特点。
在微电网中,由负荷或者微电源导致的电能质量问题往往具有持续时间短、出现频繁的特点。相比较而言,作为短期储能装置,超级电容器更为理想,因此,主要考虑超级电容器在微电网中的应用。虽然目前超级电容器价格依然偏高,但随着价格的逐渐下降,超级电容器作为一种高效、实用、环保的能量存储装置,必然会成为理想的选择。
一、提供短时供电
微电网存在两种典型的运行模式:正常情况下,微电网与常规配电网并网运行,称为并网运行模式;当检测到电网故障或电能质量不满足要求时, 微电网将及时与电网断开从而独立运行, 称为孤网运行模式。微电网往往需要从常规配电网中吸收部分有功功率,因而微电网在从并网模式向孤网模式转换时,会有功率缺额,安装储能设备有助于2种模式的平稳过渡。
二、用作能量缓冲装置
由于微电网规模较小,系统惯性不大,网络及负荷经常发生波动就显得十分严重,玻璃钢格栅对整个微电网的稳定运行造成影响。我们总是期望微电网中高效发电机(如燃料电池)始终工作在它的额定容量下。但是微电网的负荷量并非整日保持不变,相反,它会随着天气变化等情况发生波动。为了满足峰值负荷供电,必须使用燃油、燃气的调峰电厂进行高峰负荷调整,由于燃料价格很高,这种方式的运行费用太昂贵。
超级电容器储能系统可以有效地解决这个问题,它可以在负荷低落时储存电源的多余电能,而在负荷高峰时回馈给微电网以调整功率需求。储能系统作为微电网必要的能量缓冲环节,其作用越来越重要。它不仅避免了为满足峰值负荷而安装的发电机组,同时充分利用了负荷低谷时机组的发电,避免了浪费。
超级电容器功率密度大、能量密度高的特性使它成为处理尖峰负荷的最佳选择,而且采用超级电容器只需存储与尖峰负荷相当的能量。若采用蓄电池储能,需要存储几倍于尖峰负荷的能量。蓄电池曾经广泛用作储能单元,但是在微电网中需要频繁地进行充、放电控制,这样势必会大大缩短蓄电池的使用寿命。
在含有如电梯、提升机、地铁电站等恶性负荷的微电网中,配置超级电容器储能单元可以减少电力驱动系统对微电网的负面冲击影响。在负载侧有电动机或传动装置等强负载系统中,当大负载突然起动时,一般都需要一个很大的瞬间电流,这时,如果电源能量不足,电源电压将瞬间下降,从而使控制电路产生误操作,如果增大电源容量,对于平常不需大电流的工作场合来说,显然是一种浪费。而在系统中增加大功率超级电容器就可用较小容量的电源驱动较大的负载。
在微电网中,由负荷或者微电源导致的电能质量问题往往具有持续时间短、出现频繁的特点。相比较而言,作为短期储能装置,超级电容器更为理想,因此,主要考虑超级电容器在微电网中的应用。虽然目前超级电容器价格依然偏高,但随着价格的逐渐下降,超级电容器作为一种高效、实用、环保的能量存储装置,必然会成为理想的选择。
一、提供短时供电
微电网存在两种典型的运行模式:正常情况下,微电网与常规配电网并网运行,称为并网运行模式;当检测到电网故障或电能质量不满足要求时, 微电网将及时与电网断开从而独立运行, 称为孤网运行模式。微电网往往需要从常规配电网中吸收部分有功功率,因而微电网在从并网模式向孤网模式转换时,会有功率缺额,安装储能设备有助于2种模式的平稳过渡。
二、用作能量缓冲装置
由于微电网规模较小,系统惯性不大,网络及负荷经常发生波动就显得十分严重,玻璃钢格栅对整个微电网的稳定运行造成影响。我们总是期望微电网中高效发电机(如燃料电池)始终工作在它的额定容量下。但是微电网的负荷量并非整日保持不变,相反,它会随着天气变化等情况发生波动。为了满足峰值负荷供电,必须使用燃油、燃气的调峰电厂进行高峰负荷调整,由于燃料价格很高,这种方式的运行费用太昂贵。
超级电容器储能系统可以有效地解决这个问题,它可以在负荷低落时储存电源的多余电能,而在负荷高峰时回馈给微电网以调整功率需求。储能系统作为微电网必要的能量缓冲环节,其作用越来越重要。它不仅避免了为满足峰值负荷而安装的发电机组,同时充分利用了负荷低谷时机组的发电,避免了浪费。
超级电容器功率密度大、能量密度高的特性使它成为处理尖峰负荷的最佳选择,而且采用超级电容器只需存储与尖峰负荷相当的能量。若采用蓄电池储能,需要存储几倍于尖峰负荷的能量。蓄电池曾经广泛用作储能单元,但是在微电网中需要频繁地进行充、放电控制,这样势必会大大缩短蓄电池的使用寿命。
在含有如电梯、提升机、地铁电站等恶性负荷的微电网中,配置超级电容器储能单元可以减少电力驱动系统对微电网的负面冲击影响。在负载侧有电动机或传动装置等强负载系统中,当大负载突然起动时,一般都需要一个很大的瞬间电流,这时,如果电源能量不足,电源电压将瞬间下降,从而使控制电路产生误操作,如果增大电源容量,对于平常不需大电流的工作场合来说,显然是一种浪费。而在系统中增加大功率超级电容器就可用较小容量的电源驱动较大的负载。