中国自动化学会专家咨询工作委员会指定宣传媒体
免费注册 登录 广告服务 | 客服中心
您现在所在的是:

现场总线

抖音 德嘉 泓格论坛 FLIR红外热像论坛
工控论坛首页 现场总线 → 浏览主题: 基于Profibus DP总线的五层瓦楞纸板生产线传动控制系统
发表新帖 回复该主题
回帖:4个,阅读:1967 [上一页] [1] [下一页]
* 帖子主题:

基于Profibus DP总线的五层瓦楞纸板生产线传动控制系统

分享到
3650
jiang_0514
文章数:830
年度积分:49
历史总积分:3650
注册时间:2005/9/22
发站内信
发表于:2009/5/5 11:54:31
#0楼
基于Profibus DP总线的五层瓦楞纸板生产线传动控制系统
摘 要:本文介绍了一条基于Profibus DP总线的五层瓦楞纸板生产线传动控制系统。以上位机、PLC和多传动驱动器构成三级控制系统,实现了速度链结构、压力闭环控制、张力控制及相关辅助连锁控制等控制要求,保证了生产线稳定可靠的运行。

关键词:Profibus DP; plc;速度链;负荷分配

一、引言

  近年来我国经济一直保持高速增长的态势,沱牌集团酒类产品、食品、饮料产量在内需和出口的迅猛发展下,促使与其相关的包装需求也有很快的发展、瓦楞纸板箱在其包装领域里占相当大的比重,所以沱牌集团2007年的重点技术改造项目中提出对其原来的生产线进行技术改造,提高生产线的产品质量和效率,要实现管理—控制一体化 ,能根据酒类产品、食品、饮料产量来控制包装纸箱的生产。

  瓦楞纸板生产线就是由卷筒原纸经过压制瓦楞、上胶、粘合定型、分纸压线、横切成规格纸板, 最后经堆码输出等工序组成的流水作业线,简称瓦楞板板生产线。生产线构成见图1[1]



图1五层瓦楞纸板生产线
Fig.1.The five corrugated cardboard production lines

  该生产线原来使用集中拖动,各级传动由机械变速箱和离合器来完成,控制精度差,工人操作难度大,产品调整要停机来从新设置变比,效率低下[2]。决定使用采用以可编程控制器PLC和变频器为基础的集散控制系统,将PLC作为现场采集控制站,profibus dp 进行数据通信,同时还可以利用Ethernet构成上位管理级,以实现管控一体化[3]。

二、控制系统构成

  纸板生产线控制系统的结构图如下图2所示:



图2 纸板生产线控制系统的结构图
Fig.2. The structure of control system of cardboard production lines

  系统为三级控制方式。

  传动系统第一级为变频器控制级,变频器采用三菱公司FR-A540系列多传动控制器,配有闭环控制编码器反馈板,组成闭环控制系统。变频器上还配有Profibus DP通信模块(FR-A5NP) 完成速度同步功能。同时可通过人机介面设定有关速度微调参数,再由主站CPU通过网络模块与变频器系统通讯及设定,与PLC组成PROFIBUS-DP现场总线控制网络进行实时高速通讯。

  传动系统第二级为PLC控制系统,PLC采用西门子公司大型S7-400 CPU为414-2DP,执行输入及输出逻辑的处理,将同步数据运算,相关的信息通过PROFIBUS-DP网络传输到各站。PROFIBUS-DP主站设在中控室,该PLC负责通过PROFIBUS-DP采集各种信息,并在模拟屏上实时显示整个车间运行状况,一旦发生异常随即报警,以提醒操作员在第一时间作出相应调整S7-400与变频器、OP270操作屏以及S7-200辅助PLC组成PROFIBUS-DP现场总线控制网络,完成整个生产线操作控制[4][5]

  传动系统第三级为上位优化控制系统,采用DELL公司工业控制计算机,用于整个纸机传动系统状态监控。上位机采用西门子组态软件WINCC,可以通过工业以太网与QCS上位机、DCS上位机、车间管理级、厂级管理级等联网控制,实现纸机传动控制系统优化控制和自动控制[6]。

三、控制系统完成的功能

  在纸板生产线传动控制系统中,根据工艺要求需要实现以下几个主要的控制。

  1.速度链控制

  速度链结构采用二叉树数据结构算法,先对各传动点进行数学抽象,确定速度链中各传动点的编号,此编号应与传动单元(本系统为逆变器)中设定的地址一致。即任一传动点由三个数据(“父子兄”或“父子弟”)确定其在速度链中的位置,填入位置寄存器相应的数值,从而构成整个速度链结构。



图3 速度链控制系统结构
Fig.2.The structure.of control system.of speed chain

  如图3所示我们把纸板生产线的胶合部分作为速度链中的主节点,即它的给定速度就决定整个纸板生产线的工作车速,调节其给定速度就调节了整个纸板生产线纸机车速。在PLC内,我们检测到车速调节信号则改变车速单元值,1点处的速度就为第一台变频器的运行速度设定值,将其送第一台变频器执行,并送给第二台计算。第一分部的速度值乘以第二分部的变比b1/a则为第二台变频器的给定值。若第二分部速度不满足运行要求,说明第二分部变比不合适,可通过操作第二分部的加速、减速按钮实现,PLC检测到按钮信号后调节b1即调整了变比,使其适应生产要求。相当于在PLC内部有一个高精度的齿轮变速箱,可以任意无级调速。若正常生产中变比合适,某种原因需要用紧纸、松纸时,按下该分部紧纸、松纸按钮,PLC将对应在速度链上附加一正或负的偏移量则实现紧纸、松纸功能。图中2点就包含了调速和紧纸、松纸等操作指令的速度值,将它送给第二台变频器执行,同时送下一级计算。依此类推,构成速度链控制系统。速度链的分支设计采用父子算法,可以构成任意分支的速度链结构。

  本速度链的设计不仅只是为实现纸板生产线传动控制要求,而且为后续的计算机优化控制提供了可能。在PLC内部有非常精确的传动变比,我们设计为精度为0.001%,通过设定参数可以做到更高。这样有精确的传动变比上位计算机可以精确地记忆纸板生产线传动过程参数,当需要更换品种或车速时,上位计算机可以准确地将纸板生产线运行参数传入到PLC,由PLC执行,将纸板生产线调整到当前工作状态。

  2.负荷分配控制

  在纸机传动控制过程中经常遇到由几台电机同时拖动同一负载的情况。例如胶合部两辊胶合,上下传动辊都有自己的传动电机,通过加压同步运行。所以类似这样的传动只有电动机速度同步并不能满足实际系统的工作要求,实际系统还要求各传动点电机负载率相同,否则会造成一个传动点由于过载而过流,另一传动点则由于被拖动而过压,由此可能造成传动单元报警甚至停机,影响生产。因此这两个传动点之间需要进行负荷分配控制。

  负荷分配原理:在多电机传动过程中要求各传动点电机负载率相同,即δ=Pi/Pie相同(Pi为i电机所承担负载功率,Pie为电机额定功率)。而且在负荷分配调节过程中不能影响其它各分部的速度。所以我们采用速度链主链与子链相结合的设计方法。

  本系统中共有11组负荷分配传动点。包括网部4组,压榨部3组,烘缸部3组以及施胶部1组。PLC采集负荷分配点的运行转矩,求出每组总的负载转矩,根据总负荷转矩计算负载均衡时的期望转矩值,如下式:

     

  其中:T是均衡时的期望转矩值;Pie是负荷分配各点的额定功率; Ti是各点的实际转矩。

  主控PLC由DP总线通过通讯取得各点的实际转矩,通过上式计算出负荷均衡时的期望转矩作为给定值,通过调节驱动单元的输出,使各点的实际转矩值趋向一致。在实际设计中,使负荷分配传动点处于速度链的支链上,则当调节该点负荷时,不会影响其他传动点;同时还要考虑到调节负荷分配各点的输出时设置输出限幅,以免速差过大造成设备损害。

  3.气压压力闭环控制

  在原生产线中,瓦楞加压及热合部主臂加压大多采用手动阀操作的开环控制,压力调节精度较差,压力不易保持稳定。在本系统中采用压力闭环控制系统,不但使得压力调节精度提高,而且压力稳定,从而对生产线的正常生产提供了保证。

  设计中要得到较高的控制质量,首先要对压力值进行校准。由于压力传感器本身的非线性,因此可采用分段线性化对压力值进行校准,即使得现场压力表的显示值和触摸屏上的显示值达到一致。一般而言,可以把校准范围分为三段,因为压力传感器两侧线性较差,而在中间段线性较好。

  对压力值进行校准之后,通过PID控制算法实施压力闭环控制,适当整定PID参数即可达到压力的稳定输出控制。实际设计中,压力的实际值通过加压部S7-200辅助PLC采集后滤波处理并进行闭环控制程序设计,并将相应的数据通过PROFIBUS-DP总线送入主控PLC中,再通过触摸屏的模拟屏进行显示及参数设置。

  另外,还要考虑到压差自动抬辊,手动/自动切换,预压/加压控制等控制环节。

  4 .张力控制

  该系统主要用于瓦楞纸板生产线。能对瓦线生产中的原纸张力进行自动检测和适时控制,从而消除在瓦楞纸板生产过程中因原纸张力变化而产生的断纸现象,大大提高了生产效率和原材料的利用率,除低生产成本。根据生产线工艺要求,横切机前加入张力传感器。张力传感器将张力信号送入PLC,在操作台上的操作屏上进行张力设定,PLC根据张力设定值和张力传感器的反馈值进行调节。保持张力恒定准确。并在操作台的操作屏上显示实际张力。

  张力传感器检测纸板的张力信号送入PLC内,根据在操作屏上的张力设定进行计算,调节其后传动辊的输出转矩,维持纸页张力恒定,实现张力闭环控制。在张力传感器前加有断纸检测,出现断纸,可以自动退出张力控制模式,自动转为速度控制模式。待纸页重新引上后,断纸信号消失,自动转换为张力控制模式。

  PLC内采用PID控制算法,并带有速度限幅,防止断纸时出现飞车现象。PLC对张力传感器信号进行分析,可以及时报警并有效预防张力传感器故障对生产的影响。

  张力控制可以通过操作屏选择投入/退出功能。

  5.自动换卷控制

  要实现自动换卷功能,必须纸板生产线的机械、液压、气动及电气等各项指标都达到较高的控制精度和可靠性,否则可能造成设备及人员损伤。因此在无轴原纸支架的相关部位共装有23个接近开关,用来检测无轴原纸换卷过程中各部位动作到位情况。

  在设计中采用“手动/半自动/全自动”三种控制模式。“手动”模式下,纯粹以手动操作;“半自动” 模式下,整个换卷过程分为连续的几个阶段,每完成一个阶段,系统检测当前各部分是否到位,并给出提示信号,如果正常则可继续进行下一阶段,否则系统报警提示,并停止动作以便操作人员处理。“全自动”模式时,正常情况下系统完全自动运行,一旦检测到某部分运行不到位,则立即停止动作并给出声光报警提示,由操作人员进行处理。

  设计中接近开关的检测信号送入支架部S7-200辅助PLC中,并通过PROFIBUS-DP总线送入主控PLC进行处理,在操作屏上显示检测信号状态及提示信息等,配合操作人员及时掌握自动换卷运行状态。整个自动换卷程序在辅助PLC中运行。

四 总结

  该系统自从2007年8月开始投入运行,经过一段时间的机械磨合期,操作人员熟练之后,系统的调速精度、动态响应、调节效果、系统稳定性等各方面指标均达到设计要求,满足生产的需要

五、本文创新点

  在纸箱生产线传动系统中应用PROFIBUS-DP,利用其在工业现场的可靠性,灵活性以及方便易用性,特别是PROFIBUS-DP总线其高速通讯性能,灵活的配置组态,方便地构成以上位机、PLC和多传动驱动器构成三级控制系统,实现了速度链结构、压力闭环控制、张力控制及相关辅助连锁控制等控制要求,保证了生产线稳定可靠的运行,经现场运行实验效果良好。

参考文献

  [1] 洪亮.瓦楞纸箱工艺 [J].包装工程,2007,2:282-285

  [2] 李飞.瓦线的合理利用与技术改造问题 [J].全球瓦楞工业,2007,5:75-77

  [3] 孙平.可编程控制器原理及应用.北京:高等教育出版社,2003.1

  [4] 戎罡,覃强. 开放式现场总线PROFIBUS-DP应用简介[J]. 国外机电一体化技术, 2001, 20(5): 54~59

  [5] FR-A5NP Control & Communication Link System Master/Local Module[M]. MITSUBISHI Co. Ltd.

  [6]马国华.监控组态软件及其应用.北京:清华大学出版社,2001.9

3650
jiang_0514
文章数:830
年度积分:49
历史总积分:3650
注册时间:2005/9/22
发站内信
发表于:2009/5/5 11:56:34
#1楼
基于CAN总线重型汽车内轮差预警系统的设计
摘 要:为了避免由重型汽车转弯内轮差所造成的碰撞事故,本文介绍了内轮差形成原理并提出了一种基于单片机的超声波脉冲测距预警系统。系统能在汽车转弯时通过安装在汽车两侧的超声波测距传感器监测汽车内侧状况,实时显示测得的距离并在危险时发出警告,预防碰撞事故的发生。同时,系统亦可以通过CAN总线将数据传送给上位机,实现网络控制和远程监控。

关键词:CAN总线;预警;超声波;传感器


The Design of Warning System for Difference of Radius Between Inner Wheels
of Heavy-duty Truck Based on CAN Bus
SHI Bin

Abstract: To avoid accidents caused by the difference of radius between inner wheels when the heavy-duty truck is turning, the design of the warning system using ultrasonic pulse Distance-Measurement was introduced. Ultrasonic pulse Distance-Measurement installed on both sides of the truck can monitor the status inside the truck, so the system could show the real-time measured distance and warn when dangerous, that effectively prevents the occurrence of collision accidents. And the system can also transfer the data to the host machine through the CAN bus. Therefore, the network control and remote monitoring are realized.

Key words: CAN-bus; warning system; ultrasonic wave; sensor

1 内轮差原理

  内轮差是车辆转弯时的前内轮的转弯半径与后内轮的转弯半径之差。由于内轮差的存在,车辆转弯时,前、后车轮的运动轨迹不重合。内轮差的大小与转动方向盘的幅度和车辆轴距的长短有关,方向盘转动幅度越大即转向角度越大,内轮差越大,反之越小;车辆的轴距越长,内轮差越大,反之则越小。重型汽车车身都比较长,尤其是车头转过去后,还有很长的车身没有转过来,极易形成大型车辆司机的“视觉盲区”,路人步入内轮范围后,容易造成生命危险。如图1中的阴影部分为内轮差的形成区域。



图1 内轮差示意图

2 超声波预警原理

  2.1超声波测距原理

  谐振频率高于20KHZ的声波被称为超声波。超声波为直线传播,频率越高,则绕射能力越弱,反射能力越强。超声波测距的方法多种多样,如相位检测法、声波幅值检测法和往返时间检测法等。相位检测法虽然精度高,但检测范围有限;声波幅值检测法易受反射波的影响。本文采用往返时间检测法,其工作原理是:使超声波发射探头向介质发射超声脉冲,声波遇到被测物体后必有反射波作用于接收探头。若已知介质中的声速为V,发射脉冲时刻与第一个反射波到达时刻的时间差为T,则探头与被测物体距离S=VT/2,对距离值改变的测算可以实现所需的控制目的。超声波的速度V与温度相关,空气中的声速与温度的关系可表示为:

  (1)

  2.2 轮差检测中超声波传感器的布置

  汽车在行驶中即会向左侧转弯也会向右侧转弯,因此超声波传感器应该在车身的两边对称安装。本系统中一共需要安装三对传感器,一对安装在前轮附近,为了提醒司机转弯时车身后面是否会撞到转弯内侧的物体;第二对安装在轴距中间附近,为了防止有物体在汽车转弯时突然出现在转弯内侧;第三对安装在后轮附件,为了及时提醒司机危险状况。

3 系统硬件设计

  本系统将单片机技术、超声波测距技术与CAN总线通信技术等相结合,可检测汽车在转弯过程中汽车内侧状况。预警系统的三对测距传感器独立工作,通过CAN总线经接口芯片PCA82C250驱动将数据传输到主控制器。测距采用SensComp 600传感器和SensComp 6500超声波距离模块;单片机采用低成本的AT89C51主要功能为:1、用于控制测距传感器并把测量数据实时通过CAN控制器SJA1000发送到CAN总线上;2、通过温度传感器DS18B20传送过来的温度参数,修正超声波在空气中的传播速度;在PCA82C250与SJA1000之间还增加了高速线性光耦6N137进行隔离,有效地防止汽车在恶劣工作环境下的瞬态干扰,确保数据传输的准确性。因为三对测距传感器硬件系统完全相同,此次只用一个进行说明,系统硬件结构如图2所示。



图2 轮差预警系统硬件结构图

  3.1 CAN总线通信模块

  CAN总线协议遵循ISO的标准模型,分为数据链路层和物理层。这两层通常由CAN控制器和收发器了实现的。CAN总线器件可大体分为两种类型,其一种是带片上CAN控制器,如87C196CA/CB、MC6837等;另一种的CAN控制器独立需要和微处理器一起使用,如Philips SJA1000、Intel公司82526及MCP251。前者多用在许多特定情况下,使用集成器件方便用户制作印制板,使得电路设计简化、紧凑,效率提高;后者使用上比较灵活,它可以与多种类型的单片机、微型计算机的各类总线进行接口组合。在本系统中,结合前面选择的微控制器综合考虑,选Philips半导体公司的SJAl000作为独立CAN控制器。SJA1000的主要特性:扩展接收缓冲器(128字节FIFO);支持CAN 2.0B协议;同时支持11位和29位标识符;位通讯速率为1Mbits/s;增强CAN模式(PeliCAN);采用24MHz时钟频率;支持多种微处理器接口;可编程CAN输出驱动配置;工作温度范围为-40℃~+125℃,足以适应各种恶劣环境。CAN总线驱动器选用Philips公司的PCA820250,它具有高速性(最高速度可达1Mbps),能满足自制动等实时性要求较高的控制需要;具有抗瞬间干扰保护总线的能力,具有降低射频干扰的斜率控制。此外,它可以与110个节点相连,能够防止电源与地之间发生短路,并且当某个节点掉电时不影响总线。

  CAN总线通信模块主要有AT89C5l微控制器、独立CAN通信控制器SJAlO00和CAN总线驱动器PCA82C250组成。为了提高系统的抗干扰能力,设计在SJAl000和CAN总线驱动器PCA82C250之间增加了光电隔离器6N137。当微处理器AT89C51将测距结果数据通过P0口发送到CAN总线控制器SJAl000,由SJAl000将并行数据转换为串行数据从端口TX0发出,经过光电隔离器6N137后到达CAN总线驱动器PCA82C250,最后将数据发送到CAN总线上。相反,来自CAN总线的数据也可以经过相应电路到达微处理器。这样就可以实现超声波测距传感器与上位机的通信功能。

  3.2 超声波传感器介绍

  本系统采用单片机AT89C51来实现对SensComp 600系列超声波传感器和SensComp 6500超声波测距模块的控制。SensComp 600系列静电换能器的频率为50kHz;测量范围为6英寸到35英尺(0.15米~10.7米)。配合SensComp的6500驱动电路时传感器测量范围能从2.5厘米到15.2米。AT89C51通过P1.0引脚控制超声波的发送,然后单片机不停的检测INT0引脚,当INT0引脚的电平由低电平变为高电平时就认为超声波已经返回。计数器所计的数据就是超声波所经历的时间,通过换算就可以得到传感器与障碍物之间的距离,如图3所示为超声波测距的硬件示意图。



图3 超声波测距电路的硬件示意图

  3.3 温度补偿设计

  由于温度每改变10℃,声速改变量为0.6m/s,因此温度对测距的影响是相当大的。为了更精确的实现检测功能,本设计使用了美国DALLAS半导体公司的单线温度传感器DS18B20。该传感器能够直接读出被测温度并且可根据实际要求通过简单的编程实现9~12位的数字值读数方式,测温范围-55℃~+125℃,精度达±0.5℃,现场温度直接以“一线总线”的数字方式传输,大大提高了系统的抗干扰性,整个产品体积小、价格低、使用灵活,在测温精度、转换时间、传输距离、分辨率等方面都能够满足系统的要求。如图4为温度传感器与单片机的连接原理图。



图4 温度校正部分原理图

4 系统软件设计

  软件采用模块化设计,程序由主程序、测距子程序、CAN总线通信子程序等模块组成。调试过程中对其中每个功能模块和子程序逐一调试,在每个子程序都完成其指定的功能后,再进行整合完成最后的综合调试。轮差预警系统的主程序流程图、测距子程序流程图分别如图5、6所示。汽车转弯时启动预警系统,AT89C51先把P1.0置0,启动超声波传感器发射超声波,同时启动内部定时器T0开始计时。我们采用的超声波传感器是收发一体的,在发送完16个脉冲后超声波传感器还有余震,为了从返回信号识别消除超声波传感器的发送信号,要检测返回信号必须在启动发射信号后2.38ms才可以检测。当超声波信号碰到障碍物时信号立刻返回,微处理器不停的扫描INT0引脚,如果INT0接收的信号由低电平变为高电平,此时表明信号已经返回,微处理器进入中断关闭定时器。再把定时器中的数据结合温度传感器送来的现场温度经过校正换算,可以得出超声波传感器与障碍物之间的真实距离;然后显示测距结果,若测距结果低于设定阀值则产生报警信号;最后把得到的距离数据实时的通过CAN总线网络向汽车主控制器发送,这样就可以实现预警系统与CAN网络其他节点和上位机的通信和网络控制功能。




5 结论

  本文提出了一种应用于重型汽车的轮差预警系统,基于超声脉冲测距原理进行测距,根据现场温度对数据进行校正,并通过CAN总线将轮差预警系统与汽车的数字化平台接轨,降低了环境因素的影响,提高了系统的检测精度。根据障碍物到车体的距离远近进行实时显示,当该计算距离小于安全距离时,可以进行预警,提醒司机采取必要措施以避免发生碰撞事故。本系统结构简单、可靠性高,可以经济、有效地降低大型汽车轮差事故发生率,具有很好的应用前景。

参考文献

  [1] 黄世霖等. 汽车碰撞与安全[M]. 北京: 清华大学出版社, 2000.

  [2] 何希才.传感器及其应用电路[M] . 电子工业出版社, 2001.

  [3] 邬宽明. CAN总线原理和应用系统设计[M]. 北京: 北京航空航天大学出版社, 1996.

  [4] 阳宪惠. 现场总线技术及应用[M]. 北京: 清华大学出版社, 1999.

  [5] 王绍銧, 夏群生, 李建秋等. 汽车电子学[M]. 北京: 清华大学出版社, 2005.

  [6] 黄世霖, 张金换, 王晓冬等. 汽车碰撞与安全[M]. 北京: 清华大学出版社, 2000.

3650
jiang_0514
文章数:830
年度积分:49
历史总积分:3650
注册时间:2005/9/22
发站内信
发表于:2009/5/5 11:58:04
#2楼
基于现场总线技术改造可控硅控制系统
一、概述
  在自动化系统的配置中既要保证系统的先进、可靠、合理性,又要避免过剩功能、降低投资成本,这是系统改造时首先要考虑的。东北轻合金有限责任公司针对1560ram拉弯矫直机列存在的电气系统故障高,可靠性差,而产品质量、尺寸精度是要求极高这一问题,决定应用新的数字系统对原可控硅控制系统进行改造。新的系统采用了SIEMENS可编程控制器SIEMATICs7—300和窗1:3控制中心WINCC,ABB公司的全数字调速系统DCS500、变频器ACS60O等。基于PROFIBUS总线技术,实现了与ABB的DCS500、ACS60O的通信。以PLCSIEMATICs7做主控设备,HOST计算机做生产管和过程显示。改造后成功运行,可靠性大大提高,避免了生产过程中的突发断带、超速等严重制约生产的现象。
二、设备原控制系统情况
  拉弯矫直机列构成如图1所示,包括四台直流电动机,分别为开卷、剪边、矫直机和卷取机的驱动电机。原可控硅控制系统为三相桥式电路,模拟调节器,由一台SYSTEMV工业计算机及PLC进行系统设定和连锁控制。采用插件式电子线路板及可控硅分立元件,该设备核心部分为双S辊及三个矫直工作辊组成的拉伸矫直装置,入口张紧辊和出口张紧辊由一台直流电动机


驱动,中间采用小功率交流电动机带动行星轮系调节两个张紧辊转速差,并由两个光电码盘测出每个张紧辊的转速,计算机系统据此计算出延伸量,与设定值比较,存在误差则通过交流电动机调节行星轮系,从而形成闭环控制。矫直工作辊位置可任意设定,从而得到不同的矫平效果。卷取、开卷张力可根据加工要求设定,在张力作用下,带材被拉伸,并被三个工作辊矫直。
三、应用总线系统的改造
  基本保持原系统动力分布,圆盘剪驱动改为双侧电机交流调速。其它直流电动机及功率不变。控制系统基础部分主要由SIEMENSPLCs7—300,远方站ET2Z)0M,操作员工作站WINCC,触摸屏TP,D(S50o全数字直流调速系统及ACS600变频器组成。全数字直流调速系统、变频器均以PROFIBUS—DP协议方式与PIESIIMATICs7相连,通过HOST计算机设定加工参数和过程自动化,由PIE系统分配给定拉弯矫直机的速度、张力电流。系统构成如图2所示。

  主站PIEMASTERs7—300.CPU为$7315—2DP,主控系统包含程序,对系统进行实时控制和逻辑控制,完成延伸率控制、工作辊位置调节。远方站ET2Z)0M一个作为操作信号的输入,另一个做逻辑信号的输入、输出。主控系统启动后,  首先是硬热点读取,然后调应用程序、输出结果,遇到END返回程序起点,循环运行。延伸率控制、工作辊位置调节仍然延用原来的控制过程,但速度、位置测量信号直接输入s7—300,并通过HOST计算机设定给定数据及显示控制结果,准确性比原来有所提高,消除了失控现象。圆盘剪切机改为双电动机驱动是从机械结构考虑的,双机双馈电关键是转速相等,应用PROFIBUS总线,两个变频器由同一节点接入和通信,从电动机跟随给定电动机转速实现同步。
  HOST计算机用P4CPU,WindowsNT操作系统,与总线连接用网卡CP5611。组态用西门子WINCC监控软件,实现图形、画面显示和报警。功能主要有生产工艺参数设定,过程数据监控如电流、张力、卷径、机列速度、延伸率及工作辊状态位置等,各种曲线显示和存储,主要包括张力曲线、速度曲线、延伸率曲线。生产数据统计报表、存储、打印。系统维护由专业人员使用界面进行调整,更改系统数据。
四、改造后控制系统的优点
  开放式现场总线标准PROFIBUS—DP具有高效低成本、即插即用的特点,常用于工厂自动化。PROFIBUS采用一种两头有终端的总线拓扑,确保在运行期间接入和断开一个或多个站而不影响其他站,物理层选择PS485,用于PROFIBUS—DP,采用异步NRZ传输编码,波特率12MBit/s,屏蔽双绞电缆。
  PROFIBUS—DP适合代替HE/PC与I/O之间成本昂贵的电缆线。速度快,传输1KB的I/O数据所需时间<2ms。功能强大的工具减少组态和维护费用,所有主要的PLC制造商都支持,有广泛的产品可提供,允许周期性的和非周期性的数据传输。这次改造采用屏蔽双绞电缆PROFIBUS—DP,设10个节点地址定义所连的设备,取代原配的大量电缆、导线,使安装简单、容易可靠。相应地选择与PROFIBUS—DP兼容的西门子、ABB公司的调速设备和器件,便于组态和减少编程工作量。
  DCS500全数字直流调速系统,具有通用性,用于具体调速方案时,可视要求设定系统参数、控制方式。转矩设定可选择速度、张力一开卷及张力一卷取三种方式,这次改造中,矫直机、开卷机及卷取机驱动分别按这三种方式设定,结构原理如图3所示。


  由于全数字调速系统的公式化特征,参数设定由模拟系统的电容、电位器调整,转为数字的键入、状态标码的选择,调试效率极高,保护措施完善,安装及运行可靠性好。
  改造后的拉弯矫直机列控制系统故障率明显降低,各项电气及工艺指标都达到设计要求,充分发挥了设备的使用性能,实现了控制系统网络化。可控硅模拟调速系统改造,选择基于现场总线技术的全数字控制系统,不仅是出于应用当前最新技术的考虑,关键还在于它具有良好的实用性和面向生产过程网络化管理的可发展性。
1456
华东海
文章数:233
年度积分:50
历史总积分:1456
注册时间:2008/6/22
发站内信
发表于:2009/5/5 23:21:26
#3楼
好文章 学习了.支持下
1220
ggsx2008
文章数:32
年度积分:50
历史总积分:1220
注册时间:2009/4/22
发站内信
发表于:2010/3/9 22:37:43
#4楼
mark
工控学堂推荐视频:

关于我们 | 联系我们 | 广告服务 | 本站动态 | 友情链接 | 法律声明 | 非法和不良信息举报

工控网客服热线:0755-86369299
版权所有 工控网 Copyright©2024 Gkong.com, All Rights Reserved

78.0005