发表于:2008/11/27 8:45:00
#0楼
摘 要:塑料挤出机的原理是固态塑料在加热和挤出机的螺杆旋转加压条件下熔融、塑化,通过特定形状的口模而制成截面与口模形状相同的连续塑料制品。本文以挤出机改造为例,介绍了多电机变频控制系统的具体应用。
关键词:变频器
1 引言
塑料挤出机的原理是固态塑料在加热和挤出机的螺杆旋转加压条件下熔融、塑化,通过特定形状的口模而制成截面与口模形状相同的连续塑料制品。挤出机的传动以往大多采用直流传动或电磁调速控制,前者维护繁杂而且费用巨大,影响设备的使用效率,后者调速精度低、产品档次低,这些都在很大程度上影响了挤出机的发展。
由于交流变频技术在我国近几年得到了突飞猛进的发展,而且变频调速在频率范围、动态响应、调速精度、低频转矩、转差补偿、通信功能、智能控制、功率因素、工作效率和使用方便等方面是以往的调速方式是无法比拟的,所以深受挤出机制造企业的青睐,在新型的挤出机械中,尤其是塑料机械都采用了高性能的变频器,同时原有的旧挤出机设备也将进入新一轮的改造期。
本文将主要介绍TMS变频器在塑料薄膜机械中的应用。
TMS具有以下独特优势:开环矢量控制,实现高精度高转矩。力矩响应时间极短,低速度时具有转矩自动提升功能;内置EMI噪声滤波器,有效提高系统可靠性。大幅度降低噪音干扰,避免电磁干扰其他设备导致误动作;带旋钮的操作器,并可自由移动,使用简单。
2 挤出机变频控制系统
图1的塑料薄膜挤出生产线控制系统中,需要速度同步的共有3台电机,即挤出电机、拉料辊电机、导辊电机互相同步。为实现以上思想,我们采用对挤出电机进行主速度给定,其余的拉料辊电机和导辊电机的同步速度信号分别取自前一电机的实际速度值,并可通过电位器进行速度微调。如此一来,只要改变挤出电机的速度给定,拉料辊电机和导辊电机的速度也随之同步变化,而且变化不带有时滞性。
图1 塑料薄膜挤出机工作原理
图2所示为挤出机设备的变频控制接线原理,前三台电机采用3G3MZ变频器矢量无传感器开环速度控制以实现速度同步。其中挤出电机的运行频率(n2.00)设定为“2”,即由频率指令输入端A1决定速度同步的基准信号,输出频率(n3.03)为挤出电机实际的运行频率,以此作为速度同步信号给下一台电机。拉料辊电机和导辊电机的运行频率(n2.10)设定为“第一频率指令+第二频率指令”,其中A2作为主输入,A1作为辅助输入,等效的输入信号公式为:F=A2+(A1-5)。在这里,A1端子的信号接微调电位器。一般情况下,电位器信号位于中间位置,即给定为DC 5V,此时CCI的输入对变频器的给定不起作用,频率给定值信号由A2决定。当工艺生产上对塑料薄膜的张力需要进行放松或拉紧时,就可对A1值进行上下调整,频率也随着微量调节。
此种开环速度控制对于控制塑料薄膜挤出机等机械已经足够,因为TMS变频器具有很好的电压线性跟随性和高抗干扰能力,当微调某一传动点时,该传动点后级同步跟随改变,前级不变。
图2 挤出机多电机传动系统接线原理
除了速度同步之外,薄膜收卷的卷取电机也是塑料薄膜挤出机的一个重点,现采用TMS的PID切换来实现,在刚开机的时候,由于卷取部分的张力还没有建立,这时采用速度同步,即通过多功能端子(s3~s6)来使PID控制失效,此时变频器的速度指令为导辊电机的输出同步速度信号。这是因为薄膜卷在刚完成换卷时,由于张力的变化比较大,如果采用PI闭环控制容易造成较大的超调量,导致薄膜幅面抖动频繁,此时如果采用开环控制就比较具有优势。等收卷部分张力开始建立后,切换到PID控制,其控制框图如图3所示。
图3 挤出机卷取电机的PID控制原理
在图3的张力PID控制示意图中,卷取电机的张力实际值,即PID控制反馈值(来自模拟量A1端子)是位于它前面张力辊下张力传感器的实际值,通过检测该处的张力情况,来控制卷取电机的速度,从而形成一个张力闭环。卷取电机的速度加快,则塑料薄膜拉紧,张力的实际值就会上升;相反,速度降低,则塑料薄膜垂,张力的实际值就下降。由于在卷取过程中,卷取的线速度基本与导辊的线速度相同,而卷取的直径在不断增加,从而导致卷取电机的实际运行速度在不断减少,通过张力闭环控制可以自动调节速度的降低情况。
在张力设定中,通过输入变频器参数nA.11即可以将张力控制目标值进行设定,一般根据塑料薄膜的品种进行选择合适的控制值。
3 结束语
TMS系列变频器在挤出机已经有了一些成功的案例,其优良的性价比、完善的保护措施、科学的控制原理都进一步提高了挤出机整机设备的性能,在以后的整机改造或新机型设计中都具有很好的推广价值。
关键词:变频器
1 引言
塑料挤出机的原理是固态塑料在加热和挤出机的螺杆旋转加压条件下熔融、塑化,通过特定形状的口模而制成截面与口模形状相同的连续塑料制品。挤出机的传动以往大多采用直流传动或电磁调速控制,前者维护繁杂而且费用巨大,影响设备的使用效率,后者调速精度低、产品档次低,这些都在很大程度上影响了挤出机的发展。
由于交流变频技术在我国近几年得到了突飞猛进的发展,而且变频调速在频率范围、动态响应、调速精度、低频转矩、转差补偿、通信功能、智能控制、功率因素、工作效率和使用方便等方面是以往的调速方式是无法比拟的,所以深受挤出机制造企业的青睐,在新型的挤出机械中,尤其是塑料机械都采用了高性能的变频器,同时原有的旧挤出机设备也将进入新一轮的改造期。
本文将主要介绍TMS变频器在塑料薄膜机械中的应用。
TMS具有以下独特优势:开环矢量控制,实现高精度高转矩。力矩响应时间极短,低速度时具有转矩自动提升功能;内置EMI噪声滤波器,有效提高系统可靠性。大幅度降低噪音干扰,避免电磁干扰其他设备导致误动作;带旋钮的操作器,并可自由移动,使用简单。
2 挤出机变频控制系统
图1的塑料薄膜挤出生产线控制系统中,需要速度同步的共有3台电机,即挤出电机、拉料辊电机、导辊电机互相同步。为实现以上思想,我们采用对挤出电机进行主速度给定,其余的拉料辊电机和导辊电机的同步速度信号分别取自前一电机的实际速度值,并可通过电位器进行速度微调。如此一来,只要改变挤出电机的速度给定,拉料辊电机和导辊电机的速度也随之同步变化,而且变化不带有时滞性。
图1 塑料薄膜挤出机工作原理
图2所示为挤出机设备的变频控制接线原理,前三台电机采用3G3MZ变频器矢量无传感器开环速度控制以实现速度同步。其中挤出电机的运行频率(n2.00)设定为“2”,即由频率指令输入端A1决定速度同步的基准信号,输出频率(n3.03)为挤出电机实际的运行频率,以此作为速度同步信号给下一台电机。拉料辊电机和导辊电机的运行频率(n2.10)设定为“第一频率指令+第二频率指令”,其中A2作为主输入,A1作为辅助输入,等效的输入信号公式为:F=A2+(A1-5)。在这里,A1端子的信号接微调电位器。一般情况下,电位器信号位于中间位置,即给定为DC 5V,此时CCI的输入对变频器的给定不起作用,频率给定值信号由A2决定。当工艺生产上对塑料薄膜的张力需要进行放松或拉紧时,就可对A1值进行上下调整,频率也随着微量调节。
此种开环速度控制对于控制塑料薄膜挤出机等机械已经足够,因为TMS变频器具有很好的电压线性跟随性和高抗干扰能力,当微调某一传动点时,该传动点后级同步跟随改变,前级不变。
图2 挤出机多电机传动系统接线原理
除了速度同步之外,薄膜收卷的卷取电机也是塑料薄膜挤出机的一个重点,现采用TMS的PID切换来实现,在刚开机的时候,由于卷取部分的张力还没有建立,这时采用速度同步,即通过多功能端子(s3~s6)来使PID控制失效,此时变频器的速度指令为导辊电机的输出同步速度信号。这是因为薄膜卷在刚完成换卷时,由于张力的变化比较大,如果采用PI闭环控制容易造成较大的超调量,导致薄膜幅面抖动频繁,此时如果采用开环控制就比较具有优势。等收卷部分张力开始建立后,切换到PID控制,其控制框图如图3所示。
图3 挤出机卷取电机的PID控制原理
在图3的张力PID控制示意图中,卷取电机的张力实际值,即PID控制反馈值(来自模拟量A1端子)是位于它前面张力辊下张力传感器的实际值,通过检测该处的张力情况,来控制卷取电机的速度,从而形成一个张力闭环。卷取电机的速度加快,则塑料薄膜拉紧,张力的实际值就会上升;相反,速度降低,则塑料薄膜垂,张力的实际值就下降。由于在卷取过程中,卷取的线速度基本与导辊的线速度相同,而卷取的直径在不断增加,从而导致卷取电机的实际运行速度在不断减少,通过张力闭环控制可以自动调节速度的降低情况。
在张力设定中,通过输入变频器参数nA.11即可以将张力控制目标值进行设定,一般根据塑料薄膜的品种进行选择合适的控制值。
3 结束语
TMS系列变频器在挤出机已经有了一些成功的案例,其优良的性价比、完善的保护措施、科学的控制原理都进一步提高了挤出机整机设备的性能,在以后的整机改造或新机型设计中都具有很好的推广价值。
[此贴子已经被风之力于2008-11-27 8:54:03编辑过]
专业生产无纸记录仪……